
Math 255A Lecture 28 Notes

Daniel Raban

December 7, 2018

1 Properties of Reflexive Spaces

1.1 Reflexivity of subspaces and the dual space

Last time we proved Kakutani’s theorem, that a Banach space B is reflexive if and only if
{x ∈ B : ‖x‖ ≤ 1} is compact for σ(B,B∗).

Proposition 1.1. Let B be a reflexive Banach space, and let M ⊆ B be a closed subspace.
Then M is reflexive.

Proof. We have to show that {x ∈M : ‖x‖ ≤ 1} is compact for σ(M,M∗). Now σ(M,M∗)
agrees with the topology induced on M by σ(B,B∗). We can write {x ∈ M : ‖x‖ ≤ 1} =
M ∩ {x ∈ B : ‖x‖ ≤ 1}, where {x ∈ B : ‖x‖ ≤ 1} is compact for σ(B,B∗). M is closed
and convex, so it is closed for σ(B,B∗). Therefore, M ∩ {x ∈ B : ‖x‖ ≤ 1} is compact for
σ(B,B∗), so it is compact for σ(M,M∗). By Kakutani’s theorem, M is reflexive.

Corollary 1.1. A Banach space B is reflexive if and only if B∗ is reflexive.

Proof. ( =⇒ ): By Banach-Alaoglu, {ξ ∈ B∗ : ‖ξ‖ ≤ 1} is compact for σ(B∗, B). B
is reflexive, so this topology agrees with σ(B∗, B∗∗), as B is reflexive. This is the weak
topology on B∗. By Kakutani’s theorem, B∗ is reflexive.

( ⇐= ): If B∗ is reflexive, by the first part of the proof, B∗∗ is reflexive. Now J :
B → B∗∗ is isometric, so J(B) ⊆ B∗∗ is closed. So J(B) is reflexive. We claim that B is
reflexive. In general, if B1 and B2 are Banach spaces with B2 reflexive and there exists
T ∈ L(B1, B2) is bijective, then B1 is reflexive. The adjoint T ∗ : B∗2 → B∗1 is bijective; for
all ξ ∈ B∗1 , there exists a unique η ∈ B∗2 sicj tjat ξ = T ∗η. Let y ∈ B∗∗1 , and consider (for
ξ ∈ B∗1),

〈ξ, y〉 = 〈T ∗η, y〉 = 〈η, T ∗∗y〉 = 〈η, x〉 ,
where x ∈ B2, since B is reflexive (so we can view T ∗∗ : B∗∗1 → B2). We get

〈ξ, y〉 = 〈x, (T ∗)−1︸ ︷︷ ︸
=(T−1)∗

ξ〉 = 〈T−1x︸ ︷︷ ︸
∈B1

, ξ〉.

This shows that B1 is reflexive, and we get that B is reflexive.
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We record the general statement we have proved here for completeness.

Proposition 1.2. Let B1 and B2 be Banach spaces with B2 reflexive, and let T ∈ L(B1, B2)
is bijective. Then B1 is reflexive.

Example 1.1. L1(Rn) is not reflexive, so L∞(Rn) is not reflexive. This differs from the
spaces Lp for 1 < p <∞, which are reflexive.

1.2 Compactness properties of the weak topology

Corollary 1.2. Let B be a reflexive Banach space, and let K ⊆ B be closed, bounded, and
convex. Then K is compact for σ(B,B∗).

Proof. K is closed and convex, so K is closed for σ(B,B∗). Moreover, K ⊆ {x ∈ B : ‖x‖ ≤
C}, which is compact for σ(B,B∗). So K is compact.

Recall: Let B be a separable Banach space, and let ξn ∈ B∗ be a such that ‖ξn‖ ≤ C.
Then there exists a subsequence (ξnk

) which converges in σ(B∗, B). We have a similar
statement for reflexive Banach spaces which need not be separable.

First, we state a basic fact that we will use.

Proposition 1.3. Let B be a Banach space. If B∗ is separable, then so is B.

We do not have time to prove this statement, but you can either do the proof yourself
or see the proof in Folland’s textbook (exercise 25 in chapter 5).

Theorem 1.1. Let B be a reflexive Banach space, and let (xn) be a bounded sequence.
There exists a subsequence (xnk

) which converges in σ(B,B∗).

Proof. Let M0 ⊆ B be the space of finite linear combinations of the xns. M0 is separable
(using rational coefficients), and so is M = M0. Then xn ∈M for all n, and M∗ is separable
and reflexive. Then J(M) is separable, and J(M) = M∗∗. Since M∗∗ is separable, we get
that M∗ is separable. It follows that the weak topology σ(M,M∗) on {x ∈M : ‖x‖ ≤ 1} is
metrizable. Thus, {x ∈ M : ‖x‖ ≤ 1} is a compact metric space for σ(M,M∗), and there
exists a subsequence (xnk

) which converges in σ(M,M∗). In other words, 〈xnk
, η〉 → 〈x0, η〉

for all η ∈M∗. If ξ ∈ B∗, then ξ|M ∈M∗ and so xnk
→ x0 in σ(B,B∗).

Remark 1.1. If B is a Banach space, then B is separable and reflexive if and only if B∗

is separable and reflexive.
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